首页> 外文OA文献 >Min-degree constrained minimum spanning tree problem: New formulation via Miller-Tucker-Zemlin constraints
【2h】

Min-degree constrained minimum spanning tree problem: New formulation via Miller-Tucker-Zemlin constraints

机译:最小度约束的最小生成树问题:通过Miller-Tucker-Zemlin约束的新公式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given an undirected network with positive edge costs and a positive integer d > 2, the minimum-degree constrained minimum spanning tree problem is the problem of finding a spanning tree with minimum total cost such that each non-leaf node in the tree has a degree of at least d. This problem is new to the literature while the related problem with upper bound constraints on degrees is well studied. Mixed-integer programs proposed for either type of problem is composed, in general, of a tree-defining part and a degree-enforcing part. In our formulation of the minimum-degree constrained minimum spanning tree problem, the tree-defining part is based on the Miller-Tucker-Zemlin constraints while the only earlier paper available in the literature on this problem uses single and multi-commodity flow-based formulations that are well studied for the case of upper degree constraints. We propose a new set of constraints for the degree-enforcing part that lead to significantly better solution times than earlier approaches when used in conjunction with Miller-Tucker-Zemlin constraints. © 2009 Elsevier Ltd. All rights reserved.
机译:给定一个具有正边成本且正整数d> 2的无向网络,最小度约束的最小生成树问题是找到具有最小总成本的生成树的问题,这样树中的每个非叶节点都有一个度至少d。这个问题对于文献来说是新问题,而对度数上限有严格限制的相关问题已得到很好的研究。针对任一类型问题提出的混合整数程序通常由树定义部分和度执行部分组成。在我们提出的最小度约束最小生成树问题的公式中,树定义部分基于Miller-Tucker-Zemlin约束,而文献中关于该问题的仅有的较早论文使用基于单商品流和多商品流的对于高阶约束的情况,对公式进行了很好的研究。我们为度执行部分提出了一组新的约束条件,与Miller-Tucker-Zemlin约束条件结合使用时,与以前的方法相比,解决方案时间明显缩短。 ©2009 ElsevierLtd。保留所有权利。

著录项

  • 作者

    Akgün I.; Tansel, B.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号